If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+2y-5=0
a = 2; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·2·(-5)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{11}}{2*2}=\frac{-2-2\sqrt{11}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{11}}{2*2}=\frac{-2+2\sqrt{11}}{4} $
| 43p-5=13 | | 173+x/3=90 | | 15y=14 | | x=63(2x-5) | | -5x-5=4x+12 | | 173+x/2=90 | | 4x+2+2x=–7–3x | | 2x-8=-10x-7 | | 203+0.04d=56+0.11d | | 3x^2+10x=4 | | 7(7x+3)=6(2x+6) | | -1/6(x-19)+1/3(x+3)=x+19 | | 203+0.04d=339 | | 4(9x-5)=2x+150 | | 56+0.11d=903 | | 5g+4(-5+2g)=-5(-1+g) | | 4.16-0.17b=1.92+0.15b | | 8.2y-2.1y=183 | | 1.92+0.15b=5.22 | | -3x^2+2(16-x^2)=0 | | 3/5-(5x/3)=176 | | 4.16-0.17b=3.31 | | 7y+11y=144 | | 3/5-5x/3=176 | | 8/11=1/11*p | | P(2r)=C(20,2)/C(35,2)=20C^2/35C^2 | | 11y+2=90 | | 5(x-4)=5x=20 | | 7887-179.9m=4648.8 | | 59.1m+478=1778.2 | | 59.1m+478=7887-179.9m | | X³-2x²+2x-1=0 |